Espaces de Baire et espaces de Namioka.
On présente dans cet exposé une approche semi-classique déduite des résultats de N. Burq, P. Gérard et N. Tzvetkov [4] permettant de démontrer des inégalités de Strichartz pour un problème non captif. On retrouve ainsi des résultats de G. Staffilani et D. Tataru [16] (obtenus pour une perturbation de la métrique à support compact). On donne aussi des généralisations de ces résultats au cas d’une perturbation à longue portée
Continuing studies on 2-to-1 maps onto indecomposable continua having only arcs as proper non-degenerate subcontinua - called here arc-continua - we drop the hypothesis of tree-likeness, and we get some conditions on the arc-continuum image that force any 2-to-1 map to be a local homeomorphism. We show that any 2-to-1 map from a continuum onto a local Cantor bundle Y is either a local homeomorphism or a retraction if Y is orientable, and that it is a local homeomorphism if Y is not orientable.
It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated by S. Nadler...
The paper presents new quasicontinuous selection theorem for continuous multifunctions with closed values, being an arbitrary topological space. It is known that for with the Vietoris topology there is no continuous selection. The result presented here enables us to show that there exists a quasicontinuous and upperlower-semicontinuous selection for this space. Moreover, one can construct a selection whose set of points of discontinuity is nowhere dense.