Displaying 1001 – 1020 of 2509

Showing per page

Lindelöf property and the iterated continuous function spaces

G. Sokolov (1993)

Fundamenta Mathematicae

We give an example of a compact space X whose iterated continuous function spaces C p ( X ) , C p C p ( X ) , . . . are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces C p ( X ) on compact scattered spaces with the ω 1 th derived set empty, improving some earlier results of Pol [12] in this direction.

Linear combinations of partitions of unity with restricted supports

Christian Richter (2002)

Studia Mathematica

Given a locally finite open covering of a normal space X and a Hausdorff topological vector space E, we characterize all continuous functions f: X → E which admit a representation f = C a C φ C with a C E and a partition of unity φ C : C subordinate to . As an application, we determine the class of all functions f ∈ C(||) on the underlying space || of a Euclidean complex such that, for each polytope P ∈ , the restriction f | P attains its extrema at vertices of P. Finally, a class of extremal functions on the metric space...

Currently displaying 1001 – 1020 of 2509