Locally Compact Spaces ℓ-Tame At Infinity
Let , where is the union of all open subsets such that . In this paper, we present a pointfree topology version of , named . We observe that enjoys most of the important properties shared by and , where is the pointfree version of all continuous functions of with countable image. The interrelation between , , and is examined. We show that for any space . Frames for which are characterized.
We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α < β < τ} consisting of compact metrizable LCn-spaces Xα such that all bonding...
It is proved that for every continuous lattice there is a unique semiuniform structure generating both the order and the Lawson topology. The way below relation can be characterized with this uniform structure. These results are used to extend many of the analytical properties of real-valued l.s.cḟunctions to l.s.cḟunctions with values in a continuous lattice. The results of this paper have some applications in potential theory.
We show that each sequentially continuous (with respect to the pointwise convergence) normed measure on a bold algebra of fuzzy sets (Archimedean -algebra) can be uniquely extended to a sequentially continuous measure on the generated Łukasiewicz tribe and, in a natural way, the extension is maximal. We prove that for normed measures on Łukasiewicz tribes monotone (sequential) continuity implies sequential continuity, hence the assumption of sequential continuity is not restrictive. This yields...
We present a few results and problems related to spaces of continuous functions with the topology of pointwise convergence and the classes of LΣ(≤ ω)-spaces; in particular, we prove that every Gul’ko compact space of cardinality less or equal to is an LΣ(≤ ω)-space.