Compositions of confluent mappings and some other classes of functions
A map (= continuous function) is of order ≤ k if each of its point-inverses has at most k elements. Following [4], maps of order ≤ 2 are called simple. Which maps are compositions of simple closed [open, clopen] maps? How many simple maps are really needed to represent a given map? It is proved herein that every closed map of order ≤ k defined on an n-dimensional metric space is a composition of (n+1)k-1 simple closed maps (with metric domains). This theorem fails to be true...
We consider a concave iteration semigroup of linear continuous set-valued functions defined on a closed convex cone in a separable Banach space. We prove that such an iteration semigroup has a selection which is also an iteration semigroup of linear continuous functions. Moreover it is majorized by an "exponential" family of linear continuous set-valued functions.
We consider when one-to-one continuous mappings can improve normality-type and compactness-type properties of topological spaces. In particular, for any Tychonoff non-pseudocompact space there is a such that can be condensed onto a normal (-compact) space if and only if there is no measurable cardinal. For any Tychonoff space and any cardinal there is a Tychonoff space which preserves many properties of and such that any one-to-one continuous image of , , contains a closed copy...
Let be a Tychonoff (regular) paratopological group or algebra over a field or ring or a topological semigroup. If and , then there exists a Tychonoff (regular) topology such that and is a paratopological group, algebra over or a topological semigroup respectively.
This paper deals with the existence of non constant real valued functions on a topological space X. The main results are related to closed covers and order properties.
The present paper deals with those continuous maps from compacta into metric spaces which assume each value at most twice. Such maps are called here, after Borsuk and Molski (1958) and as in our previous paper (1990), simple. We investigate the possibility of decomposing a simple map into essential and elementary factors, and the so-called splitting property of simple maps which raise dimension. The aim is to get insight into the structure of those compacta which have the property that simple maps...
Recent results on the Conley index theory for discrete multi-valued dynamical systems with their consequences for the computation of the index for representable maps are recapitulated. The terminology is simplified with respect to previous presentations, some superfluous hypotheses are abandoned and some conclusions are proved in a simpler way.