Displaying 141 – 160 of 234

Showing per page

Connected economically metrizable spaces

Taras Banakh, Myroslava Vovk, Michał Ryszard Wójcik (2011)

Fundamenta Mathematicae

A topological space is non-separably connected if it is connected but all of its connected separable subspaces are singletons. We show that each connected sequential topological space X is the image of a non-separably connected complete metric space X under a monotone quotient map. The metric d X of the space X is economical in the sense that for each infinite subspace A ⊂ X the cardinality of the set d X ( a , b ) : a , b A does not exceed the density of A, | d X ( A × A ) | d e n s ( A ) . The construction of the space X determines a functor : Top...

Connectedness and local connectedness of topological groups and extensions

Ofelia Teresa Alas, Mihail G. Tkachenko, Vladimir Vladimirovich Tkachuk, Richard Gordon Wilson (1999)

Commentationes Mathematicae Universitatis Carolinae

It is shown that both the free topological group F ( X ) and the free Abelian topological group A ( X ) on a connected locally connected space X are locally connected. For the Graev’s modification of the groups F ( X ) and A ( X ) , the corresponding result is more symmetric: the groups F Γ ( X ) and A Γ ( X ) are connected and locally connected if X is. However, the free (Abelian) totally bounded group F T B ( X ) (resp., A T B ( X ) ) is not locally connected no matter how “good” a space X is. The above results imply that every non-trivial continuous homomorphism...

Connectedness of some rings of quotients of C ( X ) with the m -topology

F. Azarpanah, M. Paimann, A. R. Salehi (2015)

Commentationes Mathematicae Universitatis Carolinae

In this article we define the m -topology on some rings of quotients of C ( X ) . Using this, we equip the classical ring of quotients q ( X ) of C ( X ) with the m -topology and we show that C ( X ) with the r -topology is in fact a subspace of q ( X ) with the m -topology. Characterization of the components of rings of quotients of C ( X ) is given and using this, it turns out that q ( X ) with the m -topology is connected if and only if X is a pseudocompact almost P -space, if and only if C ( X ) with r -topology is connected. We also observe that...

Connection matrix pairs

David Richeson (1999)

Banach Center Publications

We discuss the ideas of Morse decompositions and index filtrations for isolated invariant sets for both single-valued and multi-valued maps. We introduce the definition of connection matrix pairs and present the theorem of their existence. Connection matrix pair theory for multi-valued maps is used to show that connection matrix pairs obey the continuation property. We conclude by addressing applications to numerical analysis. This paper is primarily an overview of the papers [R1] and [R2].

Consonance and Cantor set-selectors

Valentin Gutev (2013)

Open Mathematics

It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.

Constant selections and minimax inequalities

Mircea Balaj (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we establish two constant selection theorems for a map whose dual is upper or lower semicontinuous. As applications, matching theorems, analytic alternatives, and minimax inequalities are obtained.

Currently displaying 141 – 160 of 234