Prescribed ultrametrics
Let be a continuous map such as an open map, a closed map or a quotient map. We study under what circumstances remains an open, closed or quotient map in forcing extensions.
Let X be a Borel subset of the Cantor set C of additive or multiplicative class α, and f: X → Y be a continuous function onto Y ⊂ C with compact preimages of points. If the image f(U) of every clopen set U is the intersection of an open and a closed set, then Y is a Borel set of the same class α. This result generalizes similar results for open and closed functions.
We discuss functions f : X × Y → Z such that sets of the form f (A × B) have non-empty interiors provided that A and B are non-empty sets of second category and have the Baire property.
Let G be a locally compact Hausdorff group. We study equivariant absolute (neighborhood) extensors (G-AE's and G-ANE's) in the category G-ℳ of all proper G-spaces that are metrizable by a G-invariant metric. We first solve the linearization problem for proper group actions by proving that each X ∈ G-ℳ admits an equivariant embedding in a Banach G-space L such that L∖{0} is a proper G-space and L∖{0} ∈ G-AE. This implies that in G-ℳ the notions of G-A(N)E and G-A(N)R coincide. Our embedding result...