Previous Page 3

Displaying 41 – 43 of 43

Showing per page

Two types of remainders of topological groups

Aleksander V. Arhangel'skii (2008)

Commentationes Mathematicae Universitatis Carolinae

We prove a Dichotomy Theorem: for each Hausdorff compactification b G of an arbitrary topological group G , the remainder b G G is either pseudocompact or Lindelöf. It follows that if a remainder of a topological group is paracompact or Dieudonne complete, then the remainder is Lindelöf, and the group is a paracompact p -space. This answers a question in A.V. Arhangel’skii, Some connections between properties of topological groups and of their remainders, Moscow Univ. Math. Bull. 54:3 (1999), 1–6. It is...

Currently displaying 41 – 43 of 43

Previous Page 3