Displaying 21 – 40 of 43

Showing per page

The sizes of relatively compact T 1 -spaces

Winfried Just (1996)

Commentationes Mathematicae Universitatis Carolinae

The relativization of Gryzlov’s theorem about the size of compact T 1 -spaces with countable pseudocharacter is false.

The subspace of weak P -points of *

Salvador García-Ferreira, Y. F. Ortiz-Castillo (2015)

Commentationes Mathematicae Universitatis Carolinae

Let W be the subspace of * consisting of all weak P -points. It is not hard to see that W is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that W is a p -pseudocompact space for all p * .

The sup = max problem for the extent and the Lindelöf degree of generalized metric spaces, II

Yasushi Hirata (2015)

Commentationes Mathematicae Universitatis Carolinae

In [The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. The special issue devoted to Čech 54 (2013), no. 2, 245–257], the author and Yajima discussed the sup = max problem for the extent and the Lindelöf degree of generalized metric spaces: (strict) p -spaces, (strong) Σ -spaces and semi-stratifiable spaces. In this paper, the sup = max problem for the Lindelöf degree of spaces having G δ -diagonals and for the extent of spaces having point-countable bases...

The sup = max problem for the extent of generalized metric spaces

Yasushi Hirata, Yukinobu Yajima (2013)

Commentationes Mathematicae Universitatis Carolinae

It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.

The union of two D-spaces need not be D

Dániel T. Soukup, Paul J. Szeptycki (2013)

Fundamenta Mathematicae

We construct from ⋄ a T₂ example of a hereditarily Lindelöf space X that is not a D-space but is the union of two subspaces both of which are D-spaces. This answers a question of Arhangel'skii.

The σ -property in C ( X )

Anthony W. Hager (2016)

Commentationes Mathematicae Universitatis Carolinae

The σ -property of a Riesz space (real vector lattice) B is: For each sequence { b n } of positive elements of B , there is a sequence { λ n } of positive reals, and b B , with λ n b n b for each n . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “ σ ” obtains for a Riesz space of continuous real-valued functions C ( X ) . A basic result is: For discrete X , C ( X ) has σ iff the cardinal | X | < 𝔟 , Rothberger’s bounding number. Consequences and...

Three small results on normal first countable linearly H-closed spaces

Mathieu Baillif (2022)

Commentationes Mathematicae Universitatis Carolinae

We use topological consequences of PFA, MA ω 1 (S)[S] and PFA(S)[S] proved by other authors to show that normal first countable linearly H-closed spaces with various additional properties are compact in these models.

Topological spaces compact with respect to a set of filters

Paolo Lipparini (2014)

Open Mathematics

If is a family of filters over some set I, a topological space X is sequencewise -compact if for every I-indexed sequence of elements of X there is such that the sequence has an F-limit point. Countable compactness, sequential compactness, initial κ-compactness, [λ; µ]-compactness, the Menger and Rothberger properties can all be expressed in terms of sequencewise -compactness for appropriate choices of . We show that sequencewise -compactness is preserved under taking products if and only if there...

Two cardinal inequalities for functionally Hausdorff spaces

Alessandro Fedeli (1994)

Commentationes Mathematicae Universitatis Carolinae

In this paper, two cardinal inequalities for functionally Hausdorff spaces are established. A bound on the cardinality of the τ θ -closed hull of a subset of a functionally Hausdorff space is given. Moreover, the following theorem is proved: if X is a functionally Hausdorff space, then | X | 2 χ ( X ) wcd ( X ) .

Currently displaying 21 – 40 of 43