On the lattice structure of topologies
Weakly bisequential spaces were introduced by A.V. Arhangel'skii [1], in this paper. We discuss the relations between weakly bisequential spaces and metric spaces, countably bisequential spaces, Fréchet-Urysohn spaces.
In this paper, we give some characterizations of metric spaces under weak-open -mappings, which prove that a space is -developable (or Cauchy) if and only if it is a weak-open -image of a metric space.
We show that a (weakly) Whyburn space may be mapped continuously via an open map onto a non (weakly) Whyburn space . This fact may happen even between topological groups and , a homomorphism, Whyburn and not even weakly Whyburn.
We introduce the properties of a space to be strictly or strictly , where , and we analyze them and other generalizations of -sequentiality () in Function Spaces, such as Kombarov’s weakly and strongly -sequentiality, and Kocinac’s and -properties. We characterize these in in terms of cover-properties in ; and we prove that weak -sequentiality is equivalent to -property, where and , in the class of spaces which are -compact for every ; and that is a -space iff satisfies...
We solve the long standing problem of characterizing the class of strongly Fréchet spaces whose product with every strongly Fréchet space is also Fréchet.
As is well-known, every product of a locally compact space with a -space is a -space. But, the product of a separable metric space with a -space need not be a -space. In this paper, we consider conditions for products to be -spaces, and pose some related questions.