Previous Page 20

Displaying 381 – 387 of 387

Showing per page

Ordered spaces with special bases

Harold Bennett, David Lutzer (1998)

Fundamenta Mathematicae

We study the roles played by four special types of bases (weakly uniform bases, ω-in-ω bases, open-in-finite bases, and sharp bases) in the classes of linearly ordered and generalized ordered spaces. For example, we show that a generalized ordered space has a weakly uniform base if and only if it is quasi-developable and has a G δ -diagonal, that a linearly ordered space has a point-countable base if and only if it is first-countable and has an ω-in-ω base, and that metrizability in a generalized ordered...

Order-like structure of monotonically normal spaces

Scott W. Williams, Hao Xuan Zhou (1998)

Commentationes Mathematicae Universitatis Carolinae

For a compact monotonically normal space X we prove:   (1)   X has a dense set of points with a well-ordered neighborhood base (and so X is co-absolute with a compact orderable space);   (2)   each point of X has a well-ordered neighborhood π -base (answering a question of Arhangel’skii);   (3)   X is hereditarily paracompact iff X has countable tightness. In the process we introduce weak-tightness, a notion key to the results above and yielding some cardinal function results on monotonically normal...

Ordinal remainders of classical ψ-spaces

Alan Dow, Jerry E. Vaughan (2012)

Fundamenta Mathematicae

Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain T α : α < λ of infinite subsets of ω, there exists [ ω ] ω , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain T α : α < λ , hence a ψ-space with Stone-Čech remainder...

Currently displaying 381 – 387 of 387

Previous Page 20