Previous Page 4

Displaying 61 – 73 of 73

Showing per page

Remarks on Star-Hurewicz Spaces

Yan-Kui Song (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

A space X is star-Hurewicz if for each sequence (𝒰ₙ: n ∈ ℕ) of open covers of X there exists a sequence (𝓥ₙ: n ∈ ℕ) such that for each n, 𝓥ₙ is a finite subset of 𝒰ₙ, and for each x ∈ X, x ∈ St(⋃ 𝓥ₙ,𝒰ₙ) for all but finitely many n. We investigate the relationship between star-Hurewicz spaces and related spaces, and also study topological properties of star-Hurewicz spaces.

Remarks on strongly star-Menger spaces

Yan-Kui Song (2013)

Commentationes Mathematicae Universitatis Carolinae

A space X is strongly star-Menger if for each sequence ( 𝒰 n : n ) of open covers of X , there exists a sequence ( K n : n N ) of finite subsets of X such that { S t ( K n , 𝒰 n ) : n } is an open cover of X . In this paper, we investigate the relationship between strongly star-Menger spaces and related spaces, and also study topological properties of strongly star-Menger spaces.

Remarks on the Stone Spaces of the Integers and the Reals without AC

Horst Herrlich, Kyriakos Keremedis, Eleftherios Tachtsis (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

In ZF, i.e., the Zermelo-Fraenkel set theory minus the Axiom of Choice AC, we investigate the relationship between the Tychonoff product 2 ( X ) , where 2 is 2 = 0,1 with the discrete topology, and the Stone space S(X) of the Boolean algebra of all subsets of X, where X = ω,ℝ. We also study the possible placement of well-known topological statements which concern the cited spaces in the hierarchy of weak choice principles.

Removing sets from connected product spaces while preserving connectedness

Melvin Henriksen, Amir Nikou (2007)

Commentationes Mathematicae Universitatis Carolinae

As per the title, the nature of sets that can be removed from a product of more than one connected, arcwise connected, or point arcwise connected spaces while preserving the appropriate kind of connectedness is studied. This can depend on the cardinality of the set being removed or sometimes just on the cardinality of what is removed from one or two factor spaces. Sometimes it can depend on topological properties of the set being removed or its trace on various factor spaces. Some of the results...

r-Realcompact spaces

D. Bhattacharya, Lipika Dey (2012)

Commentationes Mathematicae Universitatis Carolinae

A new generalization of realcompactness based on ultrafilters of regular F σ -subsets is introduced. Its relationship with realcompactness, almost realcompactness, almost* realcompactness, c-realcompactness is examined. Some of the properties of the newly introduced space is studied as well.

Rudin's Dowker space in the extension with a Suslin tree

Teruyuki Yorioka (2008)

Fundamenta Mathematicae

We introduce a generalization of a Dowker space constructed from a Suslin tree by Mary Ellen Rudin, and the rectangle refining property for forcing notions, which modifies the one for partitions due to Paul B. Larson and Stevo Todorčević and is stronger than the countable chain condition. It is proved that Martin's Axiom for forcing notions with the rectangle refining property implies that every generalized Rudin space constructed from Aronszajn trees is non-Dowker, and that the same can be forced...

Currently displaying 61 – 73 of 73

Previous Page 4