Displaying 81 – 100 of 208

Showing per page

Compactifications and uniformities on sigma frames

Joanne L. Walters-Wayland (1991)

Commentationes Mathematicae Universitatis Carolinae

A bijective correspondence between strong inclusions and compactifications in the setting of σ -frames is presented. The category of uniform σ -frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the σ -frame consisting of its uniform cozero part, and consequently, any compactification of any frame is so determined.

Compactness and countable compactness in weak topologies

W. Kirk (1995)

Studia Mathematica

A bounded closed convex set K in a Banach space X is said to have quasi-normal structure if each bounded closed convex subset H of K for which diam(H) > 0 contains a point u for which ∥u-x∥ < diam(H) for each x ∈ H. It is shown that if the convex sets on the unit sphere in X satisfy this condition (which is much weaker than the assumption that convex sets on the unit sphere are separable), then relative to various weak topologies, the unit ball in X is compact whenever it is countably compact....

Compactness in Metric Spaces

Kazuhisa Nakasho, Keiko Narita, Yasunari Shidama (2016)

Formalized Mathematics

In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness,...

Currently displaying 81 – 100 of 208