Displaying 141 – 160 of 387

Showing per page

On minimal Hausdorff and minimal Urysohn functions

Filippo Cammaroto, Andrei Catalioto, Jack Porter (2011)

Open Mathematics

In this article, we extend the work on minimal Hausdorff functions initiated by Cammaroto, Fedorchuk and Porter in a 1998 paper. Also, minimal Urysohn functions are introduced and developed. The properties of heredity and productivity are examined and developed for both minimal Hausdorff and minimal Urysohn functions.

On minimal strongly KC-spaces

Weihua Sun, Yuming Xu, Ning Li (2009)

Czechoslovak Mathematical Journal

In this article we introduce the notion of strongly KC -spaces, that is, those spaces in which countably compact subsets are closed. We find they have good properties. We prove that a space ( X , τ ) is maximal countably compact if and only if it is minimal strongly KC , and apply this result to study some properties of minimal strongly KC -spaces, some of which are not possessed by minimal KC -spaces. We also give a positive answer to a question proposed by O. T. Alas and R. G. Wilson, who asked whether every...

On minimal- α -spaces

Giovanni Lo Faro, Giorgio Nordo, Jack R. Porter (2003)

Commentationes Mathematicae Universitatis Carolinae

An α -space is a topological space in which the topology is generated by the family of all α -sets (see [N]). In this paper, minimal- α 𝒫 -spaces (where 𝒫 denotes several separation axioms) are investigated. Some new characterizations of α -spaces are also obtained.

On monotone Lindelöfness of countable spaces

Ronnie Levy, Mikhail Matveev (2008)

Commentationes Mathematicae Universitatis Carolinae

A space is monotonically Lindelöf (mL) if one can assign to every open cover 𝒰 a countable open refinement r ( 𝒰 ) so that r ( 𝒰 ) refines r ( 𝒱 ) whenever 𝒰 refines 𝒱 . We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.

On n -in-countable bases

S. A. Peregudov (2000)

Commentationes Mathematicae Universitatis Carolinae

Some results concerning spaces with countably weakly uniform bases are generalized for spaces with n -in-countable ones.

On non-normality points, Tychonoff products and Suslin number

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Let a space X be Tychonoff product α < τ X α of τ -many Tychonoff nonsingle point spaces X α . Let Suslin number of X be strictly less than the cofinality of τ . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification β X . In particular, this is true if X is either R τ or ω τ and a cardinal τ is infinite and not countably cofinal.

On nowhere first-countable compact spaces with countable π -weight

Jan van Mill (2015)

Commentationes Mathematicae Universitatis Carolinae

The minimum weight of a nowhere first-countable compact space of countable π -weight is shown to be κ B , the least cardinal κ for which the real line can be covered by κ many nowhere dense sets.

Currently displaying 141 – 160 of 387