On certain homological properties of finite-dimensional compacta. Carriers, minimal carriers and bubbles
Mappings preserving Cauchy sequences and certain types of convergences connected with these mappings are investigated.
We prove that for an unbounded metric space , the minimal character of a point of the Higson corona of is equal to if has asymptotically isolated balls and to otherwise. This implies that under a metric space of bounded geometry is coarsely equivalent to the Cantor macro-cube if and only if and . This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.
We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.
We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.
Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions...