Displaying 221 – 240 of 453

Showing per page

On certain types of convergences

Ján Borsík (1992)

Mathematica Bohemica

Mappings preserving Cauchy sequences and certain types of convergences connected with these mappings are investigated.

On character of points in the Higson corona of a metric space

Taras O. Banakh, Ostap Chervak, Lubomyr Zdomskyy (2013)

Commentationes Mathematicae Universitatis Carolinae

We prove that for an unbounded metric space X , the minimal character 𝗆 χ ( X ˇ ) of a point of the Higson corona X ˇ of X is equal to 𝔲 if X has asymptotically isolated balls and to max { 𝔲 , 𝔡 } otherwise. This implies that under 𝔲 < 𝔡 a metric space X of bounded geometry is coarsely equivalent to the Cantor macro-cube 2 < if and only if dim ( X ˇ ) = 0 and 𝗆 χ ( X ˇ ) = 𝔡 . This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.

On continuous extension of uniformly continuous functions and metrics

T. Banakh, N. Brodskiy, I. Stasyuk, E. D. Tymchatyn (2009)

Colloquium Mathematicae

We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.

On Eberlein compactifications of metrizable spaces

Takashi Kimura, Kazuhiko Morishita (2002)

Fundamenta Mathematicae

We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.

On fixed figure problems in fuzzy metric spaces

Dhananjay Gopal, Juan Martínez-Moreno, Nihal Özgür (2023)

Kybernetika

Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions...

Currently displaying 221 – 240 of 453