Displaying 301 – 320 of 453

Showing per page

On π -metrizable spaces, their continuous images and products

Derrick Stover (2009)

Commentationes Mathematicae Universitatis Carolinae

A space X is said to be π -metrizable if it has a σ -discrete π -base. The behavior of π -metrizable spaces under certain types of mappings is studied. In particular we characterize strongly d -separable spaces as those which are the image of a π -metrizable space under a perfect mapping. Each Tychonoff space can be represented as the image of a π -metrizable space under an open continuous mapping. A question posed by Arhangel’skii regarding if a π -metrizable topological group must be metrizable receives...

Ordered spaces with special bases

Harold Bennett, David Lutzer (1998)

Fundamenta Mathematicae

We study the roles played by four special types of bases (weakly uniform bases, ω-in-ω bases, open-in-finite bases, and sharp bases) in the classes of linearly ordered and generalized ordered spaces. For example, we show that a generalized ordered space has a weakly uniform base if and only if it is quasi-developable and has a G δ -diagonal, that a linearly ordered space has a point-countable base if and only if it is first-countable and has an ω-in-ω base, and that metrizability in a generalized ordered...

Pairwise monotonically normal spaces

Josefa Marín, Salvador Romaguera (1991)

Commentationes Mathematicae Universitatis Carolinae

We introduce and study the notion of pairwise monotonically normal space as a bitopological extension of the monotonically normal spaces of Heath, Lutzer and Zenor. In particular, we characterize those spaces by using a mixed condition of insertion and extension of real-valued functions. This result generalizes, at the same time improves, a well-known theorem of Heath, Lutzer and Zenor. We also obtain some solutions to the quasi-metrization problem in terms of the pairwise monotone normality.

Paratopological (topological) groups with certain networks

Chuan Liu (2014)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we discuss certain networks on paratopological (or topological) groups and give positive or negative answers to the questions in [Lin2013]. We also prove that a non-locally compact, k -gentle paratopological group is metrizable if its remainder (in the Hausdorff compactification) is a Fréchet-Urysohn space with a point-countable cs*-network, which improves some theorems in [Liu C., Metrizability of paratopological ( semitopological ) groups, Topology Appl. 159 (2012), 1415–1420], [Liu...

Perfectness of the Higson and Smirnov compactifications

Yuji Akaike, Naotsugu Chinen, Kazuo Tomoyasu (2007)

Colloquium Mathematicae

We provide a necessary and sufficient condition for the Higson compactification to be perfect for the noncompact, locally connected, proper metric spaces. We also discuss perfectness of the Smirnov compactification.

Prescribed ultrametrics

J. Higgins, D. Campbell (1993)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Products of non- σ -lower porous sets

Martin Rmoutil (2013)

Czechoslovak Mathematical Journal

In the present article we provide an example of two closed non- σ -lower porous sets A , B such that the product A × B is lower porous. On the other hand, we prove the following: Let X and Y be topologically complete metric spaces, let A X be a non- σ -lower porous Suslin set and let B Y be a non- σ -porous Suslin set. Then the product A × B is non- σ -lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non- σ -lower porous sets in topologically...

Currently displaying 301 – 320 of 453