Previous Page 2

Displaying 21 – 37 of 37

Showing per page

Metrizability of σ -frames

M. Mehdi Ebrahimi, M. Vojdani Tabatabaee, M. Mahmoudi (2004)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Metrization criteria for compact groups in terms of their dense subgroups

Dikran Dikranjan, Dmitri Shakhmatov (2013)

Fundamenta Mathematicae

According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroup D of a compact abelian group G determines G if the restriction homomorphism Ĝ → D̂ of the dual groups is a topological isomorphism. We introduce four conditions on D that are necessary for it to determine G and we resolve the following question: If one of these conditions holds for every dense (or G δ -dense) subgroup D of G, must G be metrizable? In particular, we prove (in ZFC) that a compact abelian group determined by all its...

Minimax theorems with applications to convex metric spaces

Jürgen Kindler (1995)

Colloquium Mathematicae

A minimax theorem is proved which contains a recent result of Pinelis and a version of the classical minimax theorem of Ky Fan as special cases. Some applications to the theory of convex metric spaces (farthest points, rendez-vous value) are presented.

Movability and limits of polyhedra

V. Laguna, M. Moron, Nhu Nguyen, J. Sanjurjo (1993)

Fundamenta Mathematicae

We define a metric d S , called the shape metric, on the hyperspace 2 X of all non-empty compact subsets of a metric space X. Using it we prove that a compactum X in the Hilbert cube is movable if and only if X is the limit of a sequence of polyhedra in the shape metric. This fact is applied to show that the hyperspace ( 2 2 , dS) i s s e p a r a b l e . O n t h e o t h e r h a n d , w e g i v e a n e x a m p l e s h o w i n g t h a t 2ℝ2 i s n o t s e p a r a b l e i n t h e f u n d a m e n t a l m e t r i c i n t r o d u c e d b y B o r s u k .

Multivalued fractals in b-metric spaces

Monica Boriceanu, Marius Bota, Adrian Petruşel (2010)

Open Mathematics

Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems theory in several topics of applied sciences. It is known that examples of fractals and multivalued fractals are coming from fixed point theory for single-valued and multivalued operators, via the so-called fractal and multi-fractal...

Currently displaying 21 – 37 of 37

Previous Page 2