Displaying 21 – 40 of 103

Showing per page

On continuous extension of uniformly continuous functions and metrics

T. Banakh, N. Brodskiy, I. Stasyuk, E. D. Tymchatyn (2009)

Colloquium Mathematicae

We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.

On Eberlein compactifications of metrizable spaces

Takashi Kimura, Kazuhiko Morishita (2002)

Fundamenta Mathematicae

We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.

On fixed figure problems in fuzzy metric spaces

Dhananjay Gopal, Juan Martínez-Moreno, Nihal Özgür (2023)

Kybernetika

Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions...

On half-completion and bicompletion of quasi-metric spaces

Elena Alemany, Salvador Romaguera (1996)

Commentationes Mathematicae Universitatis Carolinae

We characterize the quasi-metric spaces which have a quasi-metric half-completion and deduce that each paracompact co-stable quasi-metric space having a quasi-metric half-completion is metrizable. We also characterize the quasi-metric spaces whose bicompletion is quasi-metric and it is shown that the bicompletion of each quasi-metric compatible with a quasi-metrizable space X is quasi-metric if and only if X is finite.

On hereditary normality of ω * , Kunen points and character ω 1

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

We show that ω * { p } is not normal, if p is a limit point of some countable subset of ω * , consisting of points of character ω 1 . Moreover, such a point p is a Kunen point and a super Kunen point.

On homogeneous totally disconnected 1-dimensional spaces

Kazuhiro Kawamura, Lex Oversteegen, E. Tymchatyn (1996)

Fundamenta Mathematicae

The Cantor set and the set of irrational numbers are examples of 0-dimensional, totally disconnected, homogeneous spaces which admit elegant characterizations and which play a crucial role in analysis and dynamical systems. In this paper we will start the study of 1-dimensional, totally disconnected, homogeneous spaces. We will provide a characterization of such spaces and use it to show that many examples of such spaces which exist in the literature in various fields are all homeomorphic. In particular,...

On linear functorial operators extending pseudometrics

Taras O. Banakh, Oleg Pikhurko (1997)

Commentationes Mathematicae Universitatis Carolinae

For a functor F I d on the category of metrizable compacta, we introduce a conception of a linear functorial operator T = { T X : P c ( X ) P c ( F X ) } extending (for each X ) pseudometrics from X onto F X X (briefly LFOEP for F ). The main result states that the functor S P G n of G -symmetric power admits a LFOEP if and only if the action of G on { 1 , , n } has a one-point orbit. Since both the hyperspace functor exp and the probability measure functor P contain S P 2 as a subfunctor, this implies that both exp and P do not admit LFOEP.

On linear operators and functors extending pseudometrics

C. Bessaga (1993)

Fundamenta Mathematicae

For some pairs (X,A), where X is a metrizable topological space and A its closed subset, continuous, linear (i.e., additive and positive-homogeneous) operators extending metrics for A to metrics for X are constructed. They are defined by explicit analytic formulas, and also regarded as functors between certain categories. An essential role is played by "squeezed cones" related to the classical cone construction. The main result: if A is a nondegenerate absolute neighborhood retract for metric spaces,...

Currently displaying 21 – 40 of 103