Universal metric spaces
We enlarge the problem of valuations of triads on so called lines. A line in an -structure (it means that is a semigroup and is an automorphism or an antiautomorphism on such that ) is, generally, a sequence , , (where is the class of finite integers) of substructures of such that holds for each . We denote this line as and we say that a mapping is a valuation of the line in a line if it is, for each , a valuation of the triad in . Some theorems on an existence of...
It is shown that there is no Whitney map on the hyperspace for non-metrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X).
A zone diagram of order n is a relatively new concept which was first defined and studied by T. Asano, J. Matoušek and T. Tokuyama. It can be interpreted as a state of equilibrium between n mutually hostile kingdoms. Formally, it is a fixed point of a certain mapping. These authors considered the Euclidean plane with finitely many singleton-sites and proved the existence and uniqueness of zone diagrams there. In the present paper we generalize this concept in various ways. We consider general sites...
We prove a separable reduction theorem for -porosity of Suslin sets. In particular, if is a Suslin subset in a Banach space , then each separable subspace of can be enlarged to a separable subspace such that is -porous in if and only if is -porous in . Such a result is proved for several types of -porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem...