Category bases.
Page 1
Detlefsen, M., Szymański, Andrzej (1993)
International Journal of Mathematics and Mathematical Sciences
José María Ayerbe Toledano (1990)
Publicacions Matemàtiques
The purpose of this paper is to give a necessary and sufficient condition to define a category measure on a Baire topological space. In the last section we give some examples of spaces in these conditions.
K. Ciesielski, L. Larson (1991)
Fundamenta Mathematicae
The ℑ-density topology on ℝ is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with ℑ-density continuous functions, i.e., the real functions that are continuous when the ℑ-densitytopology is used on the domain and the range. It is shown that the family of ordinary continuous functions f: [0,1]→ℝ which have at least one point of ℑ-density continuity is a first category subset of C([0,1])= f: [0,1]→ℝ: f is continuous equipped...
Francis Borceux, Dominique Dejean (1986)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
I.L. Reilly, P.V. Subrahmanyam (1982)
Monatshefte für Mathematik
Libor Veselý (1992)
Acta Universitatis Carolinae. Mathematica et Physica
Elżbieta Pol (1988)
Fundamenta Mathematicae
Eric K. Douwen (1987)
Commentationes Mathematicae Universitatis Carolinae
Joanne L. Walters-Wayland (1991)
Commentationes Mathematicae Universitatis Carolinae
A bijective correspondence between strong inclusions and compactifications in the setting of -frames is presented. The category of uniform -frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the -frame consisting of its uniform cozero part, and consequently, any compactification of any frame is so determined.
Michel Talagrand (1980)
Studia Mathematica
Andrea Sorbi (1991)
Fundamenta Mathematicae
H. L. Bentley, Horst Herrlich (1978)
Commentationes Mathematicae Universitatis Carolinae
Bernard Brunet (1986)
Annales scientifiques de l'Université de Clermont. Mathématiques
Fric, R., Kent, Darrell C. (1979)
International Journal of Mathematics and Mathematical Sciences
Charles Stegall (1993)
Acta Universitatis Carolinae. Mathematica et Physica
Maria Moszyńska, Grzegorz Sójka (2010)
Bulletin of the Polish Academy of Sciences. Mathematics
We prove that if and δ are the Hausdorff metric and the radial metric on the space ⁿ of star bodies in ℝ, with 0 in the kernel and with radial function positive and continuous, then a family ⊂ ⁿ that is meager with respect to need not be meager with respect to δ. Further, we show that both the family of fractal star bodies and its complement are dense in ⁿ with respect to δ.
François Destrempes, Ambar Sengupta (1989)
Fundamenta Mathematicae
Reich, Simeon, Zaslavski, Alexander J. (1999)
Abstract and Applied Analysis
Aizicovici, Sergiu, Reich, Simeon, Zaslavski, Alexander J. (2004)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Marek Wilhelm (1981)
Fundamenta Mathematicae
Page 1