Page 1

Displaying 1 – 5 of 5

Showing per page

Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions

Jack Brown, Hussain Elalaoui-Talibi (1999)

Colloquium Mathematicae

ℒ denotes the Lebesgue measurable subsets of ℝ and 0 denotes the sets of Lebesgue measure 0. In 1914 Burstin showed that a set M ⊆ ℝ belongs to ℒ if and only if every perfect P ∈ ℒ$ℒ0 h a s a p e r f e c t s u b s e t Q $ 0 which is a subset of or misses M (a similar statement omitting “is a subset of or” characterizes 0 ). In 1935, Marczewski used similar language to define the σ-algebra (s) which we now call the “Marczewski measurable sets” and the σ-ideal ( s 0 ) which we call the “Marczewski null sets”. M ∈ (s) if every perfect set P has...

Martin’s Axiom and ω -resolvability of Baire spaces

Fidel Casarrubias-Segura, Fernando Hernández-Hernández, Angel Tamariz-Mascarúa (2010)

Commentationes Mathematicae Universitatis Carolinae

We prove that, assuming MA, every crowded T 0 space X is ω -resolvable if it satisfies one of the following properties: (1) it contains a π -network of cardinality < 𝔠 constituted by infinite sets, (2) χ ( X ) < 𝔠 , (3) X is a T 2 Baire space and c ( X ) 0 and (4) X is a T 1 Baire space and has a network 𝒩 with cardinality < 𝔠 and such that the collection of the finite elements in it constitutes a σ -locally finite family. Furthermore, we prove that the existence of a T 1 Baire irresolvable space is equivalent to the existence of...

Measurable cardinals and category bases

Andrzej Szymański (1991)

Commentationes Mathematicae Universitatis Carolinae

We show that the existence of a non-trivial category base on a set of regular cardinality with each subset being Baire is equiconsistent to the existence of a measurable cardinal.

Multiplying balls in the space of continuous functions on [0,1]

Marek Balcerzak, Artur Wachowicz, Władysław Wilczyński (2005)

Studia Mathematica

Let C denote the Banach space of real-valued continuous functions on [0,1]. Let Φ: C × C → C. If Φ ∈ +, min, max then Φ is an open mapping but the multiplication Φ = · is not open. For an open ball B(f,r) in C let B²(f,r) = B(f,r)·B(f,r). Then f² ∈ Int B²(f,r) for all r > 0 if and only if either f ≥ 0 on [0,1] or f ≤ 0 on [0,1]. Another result states that Int(B₁·B₂) ≠ ∅ for any two balls B₁ and B₂ in C. We also prove that if Φ ∈ +,·,min,max, then the set Φ - 1 ( E ) is residual whenever E is residual in...

Currently displaying 1 – 5 of 5

Page 1