Page 1 Next

Displaying 1 – 20 of 180

Showing per page

Calibres, compacta and diagonals

Paul Gartside, Jeremiah Morgan (2016)

Fundamenta Mathematicae

For a space Z let 𝒦(Z) denote the partially ordered set of all compact subspaces of Z under set inclusion. If X is a compact space, Δ is the diagonal in X², and 𝒦(X²∖Δ) has calibre (ω₁,ω), then X is metrizable. There is a compact space X such that X²∖Δ has relative calibre (ω₁,ω) in 𝒦(X²∖Δ), but which is not metrizable. Questions of Cascales et al. (2011) concerning order constraints on 𝒦(A) for every subspace of a space X are answered.

Cardinalities of DCCC normal spaces with a rank 2-diagonal

Wei-Feng Xuan, Wei-Xue Shi (2016)

Mathematica Bohemica

A topological space X has a rank 2-diagonal if there exists a diagonal sequence on X of rank 2 , that is, there is a countable family { 𝒰 n : n ω } of open covers of X such that for each x X , { x } = { St 2 ( x , 𝒰 n ) : n ω } . We say that a space X satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. We mainly prove that if X is a DCCC normal space with a rank 2-diagonal, then the cardinality of X is at most 𝔠 . Moreover, we prove that if X is a first countable...

Cartesian closed hull for (quasi-)metric spaces (revisited)

Mark Nauwelaerts (2000)

Commentationes Mathematicae Universitatis Carolinae

An existing description of the cartesian closed topological hull of p MET , the category of extended pseudo-metric spaces and nonexpansive maps, is simplified, and as a result, this hull is shown to be a special instance of a “family” of cartesian closed topological subconstructs of p q s MET , the category of extended pseudo-quasi-semi-metric spaces (also known as quasi-distance spaces) and nonexpansive maps. Furthermore, another special instance of this family yields the cartesian closed topological hull of...

Category bases.

Detlefsen, M., Szymański, Andrzej (1993)

International Journal of Mathematics and Mathematical Sciences

Category measures on Baire spaces.

José María Ayerbe Toledano (1990)

Publicacions Matemàtiques

The purpose of this paper is to give a necessary and sufficient condition to define a category measure on a Baire topological space. In the last section we give some examples of spaces in these conditions.

Category theorems concerning Z-density continuous functions

K. Ciesielski, L. Larson (1991)

Fundamenta Mathematicae

The ℑ-density topology T on ℝ is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with ℑ-density continuous functions, i.e., the real functions that are continuous when the ℑ-densitytopology is used on the domain and the range. It is shown that the family C of ordinary continuous functions f: [0,1]→ℝ which have at least one point of ℑ-density continuity is a first category subset of C([0,1])= f: [0,1]→ℝ: f is continuous equipped...

Currently displaying 1 – 20 of 180

Page 1 Next