Caractérisation des compacts métriques contenant un arc
A topological space has a rank 2-diagonal if there exists a diagonal sequence on of rank , that is, there is a countable family of open covers of such that for each , . We say that a space satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of is countable. We mainly prove that if is a DCCC normal space with a rank 2-diagonal, then the cardinality of is at most . Moreover, we prove that if is a first countable...
An existing description of the cartesian closed topological hull of , the category of extended pseudo-metric spaces and nonexpansive maps, is simplified, and as a result, this hull is shown to be a special instance of a “family” of cartesian closed topological subconstructs of , the category of extended pseudo-quasi-semi-metric spaces (also known as quasi-distance spaces) and nonexpansive maps. Furthermore, another special instance of this family yields the cartesian closed topological hull of...
The purpose of this paper is to give a necessary and sufficient condition to define a category measure on a Baire topological space. In the last section we give some examples of spaces in these conditions.
The ℑ-density topology on ℝ is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with ℑ-density continuous functions, i.e., the real functions that are continuous when the ℑ-densitytopology is used on the domain and the range. It is shown that the family of ordinary continuous functions f: [0,1]→ℝ which have at least one point of ℑ-density continuity is a first category subset of C([0,1])= f: [0,1]→ℝ: f is continuous equipped...