Graph topologies and uniform convergence in quasi-uniform spaces.
Players ONE and TWO play the following game: In the nth inning ONE chooses a set from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset of X. The players must obey the rule that for each n. TWO wins if the intersection of TWO’s sets is equal to the union of ONE’s sets. If ONE has no winning strategy, then each element of ℱ is a -set. To what extent is the converse true? We show that: (A) For ℱ the collection of countable subsets of X: 1. There are subsets...