Displaying 61 – 80 of 98

Showing per page

Topological spaces admitting a unique fractal structure

Christoph Bandt, T. Retta (1992)

Fundamenta Mathematicae

Each homeomorphism from the n-dimensional Sierpiński gasket into itself is a similarity map with respect to the usual metrization. Moreover, the topology of this space determines a kind of Haar measure and a canonical metric. We study spaces with similar properties. It turns out that in many cases, "fractal structure" is not a metric but a topological phenomenon.

Totally bounded frame quasi-uniformities

Peter Fletcher, Worthen N. Hunsaker, William F. Lindgren (1993)

Commentationes Mathematicae Universitatis Carolinae

This paper considers totally bounded quasi-uniformities and quasi-proximities for frames and shows that for a given quasi-proximity on a frame L there is a totally bounded quasi-uniformity on L that is the coarsest quasi-uniformity, and the only totally bounded quasi-uniformity, that determines . The constructions due to B. Banaschewski and A. Pultr of the Cauchy spectrum ψ L and the compactification L of a uniform frame ( L , 𝐔 ) are meaningful for quasi-uniform frames. If 𝐔 is a totally bounded quasi-uniformity...

Currently displaying 61 – 80 of 98