On coarse embeddability into -spaces and a conjecture of Dranishnikov
We show that the Hilbert space is coarsely embeddable into any for 1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ₂ and into are equivalent for 1 ≤ p < 2.
We show that the Hilbert space is coarsely embeddable into any for 1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ₂ and into are equivalent for 1 ≤ p < 2.
For any class 𝒦 of compacta and any compactum X we say that: (a) X is confluently 𝒦-representable if X is homeomorphic to the inverse limit of an inverse sequence of members of 𝒦 with confluent bonding mappings, and (b) X is confluently 𝒦-like provided that X admits, for every ε >0, a confluent ε-mapping onto a member of 𝒦. The symbol 𝕃ℂ stands for the class of all locally connected compacta. It is proved in this paper that for each compactum X and each family 𝒦 of graphs, X is confluently...
We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.