Displaying 1241 – 1260 of 1678

Showing per page

Resolving a question of Arkhangel'skiĭ's

Michael G. Charalambous (2006)

Fundamenta Mathematicae

We construct in ZFC a cosmic space that, despite being the union of countably many metrizable subspaces, has covering dimension equal to 1 and inductive dimensions equal to 2.

Rosenthal compacta and NIP formulas

Pierre Simon (2015)

Fundamenta Mathematicae

We apply the work of Bourgain, Fremlin and Talagrand on compact subsets of the first Baire class to show new results about ϕ-types for ϕ NIP. In particular, we show that if M is a countable model, then an M-invariant ϕ-type is Borel-definable. Also, the space of M-invariant ϕ-types is a Rosenthal compactum, which implies a number of topological tameness properties.

Samuel compactification and uniform coreflection of nearness σ -frames

Inderasan Naidoo (2006)

Czechoslovak Mathematical Journal

We introduce the structure of a nearness on a σ -frame and construct the coreflection of the category 𝐍 σ F r m of nearness σ -frames to the category 𝐊 R e g σ F r m of compact regular σ -frames. This description of the Samuel compactification of a nearness σ -frame is in analogy to the construction by Baboolal and Ori for nearness frames in [1] and that of Walters for uniform σ -frames in [11]. We also construct the uniform coreflection of a nearness σ -frame, that is, the coreflection of the category of 𝐍 σ F r m to the category...

Selections that characterize topological completeness

Jan van Mill, Jan Pelant, Roman Pol (1996)

Fundamenta Mathematicae

We show that the assertions of some fundamental selection theorems for lower-semicontinuous maps with completely metrizable range and metrizable domain actually characterize topological completeness of the target space. We also show that certain natural restrictions on the class of the domains change this situation. The results provide in particular answers to questions asked by Engelking, Heath and Michael [3] and Gutev, Nedev, Pelant and Valov [5].

Semi-contractions des espaces localement compacts et cas des variétés complexes

Jean-Jacques Loeb (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

En nous inspirant d’articles de Beardon, nous donnons des résultats concernant les points fixes et les orbites d’auto-applications contractantes et semi-contractantes des espaces connexes localement compacts. Des résultats plus précis sont obtenus dans le cas des variétés complexes Kobayashi hyperboliques.

Semiconvex compacta

Oleh R. Nykyforchyn (1997)

Commentationes Mathematicae Universitatis Carolinae

We define and investigate a generalization of the notion of convex compacta. Namely, for semiconvex combination in a semiconvex compactum we allow the existence of non-trivial loops connecting a point with itself. It is proved that any semiconvex compactum contains two non-empty convex compacta, the center and the weak center. The center is the largest compactum such that semiconvex combination induces a convex structure on it. The convex structure on the weak center does not necessarily coincide...

Currently displaying 1241 – 1260 of 1678