Displaying 121 – 140 of 180

Showing per page

Concerning Sets of the First Baire Category with Respect to Different Metrics

Maria Moszyńska, Grzegorz Sójka (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that if ϱ H and δ are the Hausdorff metric and the radial metric on the space ⁿ of star bodies in ℝ, with 0 in the kernel and with radial function positive and continuous, then a family ⊂ ⁿ that is meager with respect to ϱ H need not be meager with respect to δ. Further, we show that both the family of fractal star bodies and its complement are dense in ⁿ with respect to δ.

Connected economically metrizable spaces

Taras Banakh, Myroslava Vovk, Michał Ryszard Wójcik (2011)

Fundamenta Mathematicae

A topological space is non-separably connected if it is connected but all of its connected separable subspaces are singletons. We show that each connected sequential topological space X is the image of a non-separably connected complete metric space X under a monotone quotient map. The metric d X of the space X is economical in the sense that for each infinite subspace A ⊂ X the cardinality of the set d X ( a , b ) : a , b A does not exceed the density of A, | d X ( A × A ) | d e n s ( A ) . The construction of the space X determines a functor : Top...

Constant Distortion Embeddings of Symmetric Diversities

David Bryant, Paul F. Tupper (2016)

Analysis and Geometry in Metric Spaces

Diversities are like metric spaces, except that every finite subset, instead of just every pair of points, is assigned a value. Just as there is a theory of minimal distortion embeddings of fiite metric spaces into L1, there is a similar, yet undeveloped, theory for embedding finite diversities into the diversity analogue of L1 spaces. In the metric case, it iswell known that an n-point metric space can be embedded into L1 withO(log n) distortion. For diversities, the optimal distortion is unknown....

Constrained optimization: A general tolerance approach

Tomáš Roubíček (1990)

Aplikace matematiky

To overcome the somewhat artificial difficulties in classical optimization theory concerning the existence and stability of minimizers, a new setting of constrained optimization problems (called problems with tolerance) is proposed using given proximity structures to define the neighbourhoods of sets. The infimum and the so-called minimizing filter are then defined by means of level sets created by these neighbourhoods, which also reflects the engineering approach to constrained optimization problems....

Currently displaying 121 – 140 of 180