Subsets of compacta
In a former paper, motivated by a recent theory of relators (families of relations), we have investigated increasingly regular and normal functions of one preordered set into another instead of Galois connections and residuated mappings of partially ordered sets. A function of one preordered set into another has been called (1) increasingly -normal, for some function of into , if for any and we have if and only if ; (2) increasingly -regular, for some function of into itself,...
We prove that a k-dimensional hereditarily indecomposable metrisable continuum is not a -valued absolute retract. We deduce from this that none of the classical characterizations of ANR (metric) extends to the class of stratifiable spaces.
By , , we denote the -th symmetric product of a metric space as the space of the non-empty finite subsets of with at most elements endowed with the Hausdorff metric . In this paper we shall describe that every isometry from the -th symmetric product into itself is induced by some isometry from into itself, where is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the -th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and...
Let X be a locally compact, separable metric space. We prove that , where and stand for the concentration dimension and the topological dimension of X, respectively.