Selection theorems for partitions of Polish spaces
The present paper aims to furnish simple proofs of some recent results about selections on product spaces obtained by García-Ferreira, Miyazaki and Nogura. The topic is discussed in the framework of a result of Katětov about complete normality of products. Also, some applications for products with a countably compact factor are demonstrated as well.
We extend van Mill-Wattel's results and show that each countably compact completely regular space with a continuous selection on couples is suborderable. The result extends also to pseudocompact spaces if they are either scattered, first countable, or connected. An infinite pseudocompact topological group with such a continuous selection is homeomorphic to the Cantor set. A zero-selection is a selection on the hyperspace of closed sets which chooses always an isolated point of a set. Extending Fujii-Nogura...
We answer a question of van Mill and Wattel by showing that there is a separable locally compact space which admits a continuous weak selection but is not weakly orderable. Furthermore, we show that a separable space which admits a continuous weak selection can be covered by two weakly orderable spaces. Finally, we give a partial answer to a question of Gutev and Nogura by showing that a separable space which admits a continuous weak selection admits a continuous selection for all finite sets.
A rotoid is a space X with a special point e ∈ X and a homeomorphism F: X² → X² having F(x,x) = (x,e) and F(e,x) = (e,x) for every x ∈ X. If any point of X can be used as the point e, then X is called a strong rotoid. We study some general properties of rotoids and prove that the Sorgenfrey line is a strong rotoid, thereby answering several questions posed by A. V. Arhangel'skii, and we pose further questions.
A space is truly weakly pseudocompact if is either weakly pseudocompact or Lindelöf locally compact. We prove: (1) every locally weakly pseudocompact space is truly weakly pseudocompact if it is either a generalized linearly ordered space, or a proto-metrizable zero-dimensional space with for every ; (2) every locally bounded space is truly weakly pseudocompact; (3) for , the -Lindelöfication of a discrete space of cardinality is weakly pseudocompact if .