The covering dimension of product of generalized Sorgenfrey lines
We examine the Gruenhage property, property * (introduced by Orihuela, Smith, and Troyanski), fragmentability, and the existence of σ-isolated networks in the context of linearly ordered topological spaces (LOTS), generalized ordered spaces (GO-spaces), and monotonically normal spaces. We show that any monotonically normal space with property * or with a σ-isolated network must be hereditarily paracompact, so that property * and the Gruenhage property are equivalent in monotonically normal spaces....
In Dually discrete spaces, Topology Appl. 155 (2008), 1420–1425, Alas et. al. proved that ordinals are hereditarily dually discrete and asked whether the product of two ordinals has the same property. In Products of certain dually discrete spaces, Topology Appl. 156 (2009), 2832–2837, Peng proved a number of partial results and left open the question of whether the product of two stationary subsets of is dually discrete. We answer the first question affirmatively and as a consequence also give...
By the Suslinian number Sln(X) of a continuum X we understand the smallest cardinal number κ such that X contains no disjoint family ℂ of non-degenerate subcontinua of size |ℂ| > κ. For a compact space X, Sln(X) is the smallest Suslinian number of a continuum which contains a homeomorphic copy of X. Our principal result asserts that each compact space X has weight ≤ Sln(X)⁺ and is the limit of an inverse well-ordered spectrum of length ≤ Sln(X)⁺, consisting of compacta with weight ≤ Sln(X) and...