Weak orderability of second countable spaces
We demonstrate that a second countable space is weakly orderable if and only if it has a continuous weak selection. This provides a partial positive answer to a question of van Mill and Wattel.
We demonstrate that a second countable space is weakly orderable if and only if it has a continuous weak selection. This provides a partial positive answer to a question of van Mill and Wattel.
We show that if a Hausdorff topological space satisfies one of the following properties: a) has a countable, discrete dense subset and is hereditarily collectionwise Hausdorff; b) has a discrete dense subset and admits a countable base; then the existence of a (continuous) weak selection on implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.
It is proved that for a zero-dimensional space , the function space has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only if is separable. This provides the complete affirmative solution to a question posed by Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space , the function space is weakly orderable if and only if its hyperspace of at most 2-point sets has a Vietoris continuous selection. This provides a partial...