Terminal continua and the homogeneity
The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.
In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree for each positive integer .
In this paper we define a space σ(X) for approximate systems of compact spaces. The construction is due to H. Freudenthal for usual inverse sequences [4, p. 153–156]. We establish the following properties of this space: (1) The space σ(X) is a paracompact space, (2) Moreover, if X is an approximate sequence of compact (metric) spaces, then σ(X) is a compact (metric) space (Lemma 2.4). We give the following applications of the space σ(X): (3) If X is an approximate system of continua, then X = limX...
Andreas Zastrow conjectured, and Cannon-Conner-Zastrow proved, that filling one hole in the Sierpiński curve with a disk results in a planar Peano continuum that is not homotopy equivalent to a 1-dimensional set. Zastrow's example is the motivation for this paper, where we characterize those planar Peano continua that are homotopy equivalent to 1-dimensional sets. While many planar Peano continua are not homotopy equivalent to 1-dimensional compacta, we prove that each has fundamental group that...
One way to generalize complete Erdős space is to consider uncountable products of zero-dimensional -subsets of the real line, intersected with an appropriate Banach space. The resulting (nonseparable) complete Erdős spaces can be fully classified by only two cardinal invariants, as done in an earlier paper of the authors together with J. van Mill. As we think this is the correct way to generalize the concept of complete Erdős space to a nonseparable setting, natural questions arise about analogies...
A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x, y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that . In this paper, we prove that if a homeomorphism f:X → X of a continuum X can be lifted to an onto map h:P → P of the pseudo-arc P, then f is not expansive. As a corollary, we prove that there are no expansive homeomorphisms on chainable continua. This is an affirmative answer to one of Williams’ conjectures.
En este artículo presentamos una caracterización de las curvas de Peano como límite uniforme de sucesiones de curvas α-densas en el compacto que es llenado por la curva de Peano. Estas curvas α-densas deben tener densidades tendiendo a cero y sus funciones coordenadas deben de ser de variación tendiendo a infinito cuando α tiende a cero.
A homeomorphism h:X → X of a compactum X is expansive provided that for some fixed c > 0 and any distinct x, y ∈ X there exists an integer n, dependent only on x and y, such that d(hⁿ(x),hⁿ(y)) > c. It is shown that if X is a circle-like continuum that admits an expansive homeomorphism, then X is homeomorphic to a solenoid.
By the Suslinian number Sln(X) of a continuum X we understand the smallest cardinal number κ such that X contains no disjoint family ℂ of non-degenerate subcontinua of size |ℂ| > κ. For a compact space X, Sln(X) is the smallest Suslinian number of a continuum which contains a homeomorphic copy of X. Our principal result asserts that each compact space X has weight ≤ Sln(X)⁺ and is the limit of an inverse well-ordered spectrum of length ≤ Sln(X)⁺, consisting of compacta with weight ≤ Sln(X) and...
A phantom mapping h from a space Z to a space Y is a mapping whose restrictions to compact subsets are homotopic to constant mappings. If the mapping h is not homotopic to a constant mapping, one speaks of an essential phantom mapping. The definition of (essential) phantom pairs of mappings is analogous. In the study of phantom mappings (phantom pairs of mappings), of primary interest is the case when Z and Y are CW-complexes. In a previous paper it was shown that there are no essential phantom...
It is well-known that the set of buried points of a Julia set of a rational function (also called the residual Julia set) is topologically “fat” in the sense that it is a dense if it is non-empty. We show that it is, in many cases, a full-measure subset of the Julia set with respect to conformal measure and the measure of maximal entropy. We also address Hausdorff dimension of buried points in the same cases, and discuss connectivity and topological dimension of the set of buried points. Finally,...