On non-normality points, Tychonoff products and Suslin number
Let a space be Tychonoff product of -many Tychonoff nonsingle point spaces . Let Suslin number of be strictly less than the cofinality of . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification . In particular, this is true if is either or and a cardinal is infinite and not countably cofinal.