Displaying 81 – 100 of 145

Showing per page

On locally solid topological lattice groups

Abdul Rahim Khan, Keith Rowlands (2007)

Czechoslovak Mathematical Journal

Let ( G , τ ) be a commutative Hausdorff locally solid lattice group. In this paper we prove the following: (1) If ( G , τ ) has the A (iii)-property, then its completion ( G ^ , τ ^ ) is an order-complete locally solid lattice group. (2) If G is order-complete and τ has the Fatou property, then the order intervals of G are τ -complete. (3) If ( G , τ ) has the Fatou property, then G is order-dense in G ^ and ( G ^ , τ ^ ) has the Fatou property. (4) The order-bound topology on any commutative lattice group is the finest locally solid topology on...

On resolvable spaces and groups

Luis Miguel Villegas-Silva (1995)

Commentationes Mathematicae Universitatis Carolinae

It is proved that every uncountable ω -bounded group and every homogeneous space containing a convergent sequence are resolvable. We find some conditions for a topological group topology to be irresolvable and maximal.

On the completeness of localic groups

Bernhard Banaschewski, Jacob J. C Vermeulen (1999)

Commentationes Mathematicae Universitatis Carolinae

The main purpose of this paper is to show that any localic group is complete in its two-sided uniformity, settling a problem open since work began in this area a decade ago. In addition, a number of other results are established, providing in particular a new functor from topological to localic groups and an alternative characterization of L T -groups.

On the extent of star countable spaces

Ofelia Alas, Lucia Junqueira, Jan Mill, Vladimir Tkachuk, Richard Wilson (2011)

Open Mathematics

For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have...

On the non-existence of certain group topologies

Christian Rosendal (2005)

Fundamenta Mathematicae

Minimal Hausdorff (Baire) group topologies of certain groups of transformations naturally occurring in analysis are studied. The results obtained are subsequently applied to show that, e.g., the homeomorphism groups of the rational and of the irrational numbers carry no Polish group topology. In answer to a question of A. S. Kechris it is shown that the group of Borel automorphisms of ℝ cannot be a Polish group either.

On topological and algebraic structure of extremally disconnected semitopological groups

Aleksander V. Arhangel'skii (2000)

Commentationes Mathematicae Universitatis Carolinae

Starting with a very simple proof of Frol’ık’s theorem on homeomorphisms of extremally disconnected spaces, we show how this theorem implies a well known result of Malychin: that every extremally disconnected topological group contains an open and closed subgroup, consisting of elements of order 2 . We also apply Frol’ık’s theorem to obtain some further theorems on the structure of extremally disconnected topological groups and of semitopological groups with continuous inverse. In particular, every...

On topological groups with a small base and metrizability

Saak Gabriyelyan, Jerzy Kąkol, Arkady Leiderman (2015)

Fundamenta Mathematicae

A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, U α : α , such that U α U β whenever β ≤ α for all α , β . The class of all metrizable topological groups is a proper subclass of the class T G of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group G T G is metrizable, and hence G is strictly angelic. We deduce from this result...

Paratopological (topological) groups with certain networks

Chuan Liu (2014)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we discuss certain networks on paratopological (or topological) groups and give positive or negative answers to the questions in [Lin2013]. We also prove that a non-locally compact, k -gentle paratopological group is metrizable if its remainder (in the Hausdorff compactification) is a Fréchet-Urysohn space with a point-countable cs*-network, which improves some theorems in [Liu C., Metrizability of paratopological ( semitopological ) groups, Topology Appl. 159 (2012), 1415–1420], [Liu...

Perfect mappings in topological groups, cross-complementary subsets and quotients

Aleksander V. Arhangel'skii (2003)

Commentationes Mathematicae Universitatis Carolinae

The following general question is considered. Suppose that G is a topological group, and F , M are subspaces of G such that G = M F . Under these general assumptions, how are the properties of F and M related to the properties of G ? For example, it is observed that if M is closed metrizable and F is compact, then G is a paracompact p -space. Furthermore, if M is closed and first countable, F is a first countable compactum, and F M = G , then G is also metrizable. Several other results of this kind are obtained....

Productivity of coreflective classes of topological groups

Horst Herrlich, Miroslav Hušek (1999)

Commentationes Mathematicae Universitatis Carolinae

Every nontrivial countably productive coreflective subcategory of topological linear spaces is κ -productive for a large cardinal κ (see [10]). Unlike that case, in uniform spaces for every infinite regular cardinal κ , there are coreflective subcategories that are κ -productive and not κ + -productive (see [8]). From certain points of view, the category of topological groups lies in between those categories above and we shall show that the corresponding results on productivity of coreflective subcategories...

Quotient algebraic structures on the set of fuzzy numbers

Dorina Fechete, Ioan Fechete (2015)

Kybernetika

A. M. Bica has constructed in [6] two isomorphic Abelian groups, defined on quotient sets of the set of those unimodal fuzzy numbers which have strictly monotone and continuous sides. In this paper, we extend the results of above mentioned paper, to a larger class of fuzzy numbers, by adding the flat fuzzy numbers. Furthermore, we add the topological structure and we characterize the constructed quotient groups, by using the set of the continuous functions with bounded variation, defined on [ 0 , 1 ] .

Quotients of Strongly Realcompact Groups

L. Morales, M. Tkachenko (2016)

Topological Algebra and its Applications

A topological group is strongly realcompact if it is topologically isomorphic to a closed subgroup of a product of separable metrizable groups. We show that if H is an invariant Čech-complete subgroup of an ω-narrow topological group G, then G is strongly realcompact if and only if G/H is strongly realcompact. Our proof of this result is based on a thorough study of the interaction between the P-modification of topological groups and the operation of taking quotient groups.

Recent developments in the theory of Borel reducibility

Greg Hjorth, Alexander S. Kechris (2001)

Fundamenta Mathematicae

Let E₀ be the Vitali equivalence relation and E₃ the product of countably many copies of E₀. Two new dichotomy theorems for Borel equivalence relations are proved. First, for any Borel equivalence relation E that is (Borel) reducible to E₃, either E is reducible to E₀ or else E₃ is reducible to E. Second, if E is a Borel equivalence relation induced by a Borel action of a closed subgroup of the infinite symmetric group that admits an invariant metric, then either E is reducible to a countable...

Relatively coarse sequential convergence

Roman Frič, Fabio Zanolin (1997)

Czechoslovak Mathematical Journal

We generalize the notion of a coarse sequential convergence compatible with an algebraic structure to a coarse one in a given class of convergences. In particular, we investigate coarseness in the class of all compatible convergences (with unique limits) the restriction of which to a given subset is fixed. We characterize such convergences and study relative coarseness in connection with extensions and completions of groups and rings. E.g., we show that: (i) each relatively coarse dense group precompletion...

Remarks on extremally disconnected semitopological groups

Igor V. Protasov (2002)

Commentationes Mathematicae Universitatis Carolinae

Answering recent question of A.V. Arhangel'skii we construct in ZFC an extremally disconnected semitopological group with continuous inverse having no open Abelian subgroups.

Currently displaying 81 – 100 of 145