Continuous local right pseudoprocesses
We demonstrate that the set of topologically distinct inverse limit spaces of tent maps with a Cantor set for its postcritical ω-limit set has cardinality of the continuum. The set of folding points (i.e. points at which the space is not homeomorphic to the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor set.
In this paper, we show that the C1 interior of the set of all continuum-wise expansive diffeomorphisms of a closed manifold coincides with the C1 interior of the set of all expansive diffeomorphisms. And the C1 interior of the set of all continuum-wise fully expansive diffeomorphisms on a surface is investigated. Furthermore, we have necessary and sufficient conditions for a diffeomorphism belonging to these open sets to be Anosov.
We give a description of possible sets of cycle lengths for distance-decreasing maps and isometries of the ring of n-adic integers.
Michael Handel proved the existence of a fixed point for an orientation preserving homeomorphism of the open unit disk that can be extended to the closed disk, provided that it has points whose orbits form an oriented cycle of links at infinity. More recently, the author generalized Handel's theorem to a wider class of cycles of links. In this paper we complete this topic describing exactly which are all the cycles of links forcing the existence of a fixed point.
The main results of this paper are: 1. No topologically transitive cocycle -extension of minimal rotation on the unit circle by a continuous real-valued bounded variation ℤ-cocycle admits minimal subsets. 2. A minimal rotation on a compact metric monothetic group does not admit a topologically transitive real-valued cocycle if and only if the group is finite.
For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which and . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions...
According to A. Lasota, a continuous function from a real compact interval into itself is called generically chaotic if the set of all points , for which and , is residual in . Being inspired by this definition we say that is densely chaotic if this set is dense in . A characterization of the generically chaotic functions is known. In the paper the densely chaotic functions are characterized and it is proved that in the class of piecewise monotone maps with finite number of pieces the...
Transformations T:[0,1] → [0,1] with two monotonic pieces are considered. Under the assumption that T is topologically transitive and , it is proved that the invariant measures concentrated on periodic orbits are dense in the set of all invariant probability measures.
We use one-dimensional techniques to characterize the Devil’s staircase route to chaos in a relaxation oscillator of the van der Pol type with periodic forcing term. In particular, by using symbolic dynamics, we give the behaviour for certain range of parameter values of a Cantor set of solutions having a certain rotation set associated to a rational number. Finally, we explain the phenomena observed experimentally in the system by Kennedy, Krieg and Chua (in [10]) related with the appearance of...
Let f: X→ X be a topologically transitive continuous map of a compact metric space X. We investigate whether f can have the following stronger properties: (i) for each m ∈ ℕ, is transitive, (ii) for each m ∈ ℕ, there exists x ∈ X such that the diagonal m-tuple (x,x,...,x) has a dense orbit in under the action of . We show that (i), (ii) and weak mixing are equivalent for minimal homeomorphisms, that all mixing interval maps satisfy (ii), and that there are mixing subshifts not satisfying (ii)....
This paper is concerned with distributional chaos of time-varying discrete systems in metric spaces. Some basic concepts are introduced for general time-varying systems, including sequentially distributive chaos, weak mixing, and mixing. We give an example of sequentially distributive chaos of finite-dimensional linear time-varying dynamical systems, which is not distributively chaotic of type i (DCi for short, i = 1, 2). We also prove that two uniformly topological equiconjugate time-varying systems...
A chainable continuum, X, and homeomorphisms, p,q: X → X, are constructed with the following properties: (1) p ∘ q = q ∘ p, (2) p, q have simple dynamics, (3) p ∘ q is a positively continuum-wise fully expansive homeomorphism that has positive entropy and is chaotic in the sense of Devaney and in the sense of Li and Yorke.