Displaying 361 – 380 of 2392

Showing per page

Asymptotic fuzzy contractive mappings in fuzzy metric spaces

Dhananjay Gopal, Juan Martínez-Moreno, Rosana Rodríguez-López (2024)

Kybernetika

Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. However, due to the complexity involved in the nature of fuzzy metrics, the authors need to develop innovative machinery to establish new fixed point theorems in such kind of spaces. In this paper, we propose the concepts of asymptotic fuzzy ψ -contractive and asymptotic fuzzy Meir-Keeler mappings, and describe some new machinery by which the corresponding fixed point theorems are proved. In this sense,...

Attractors and Inverse Limits.

James Keesling (2008)

RACSAM

This paper surveys some recent results concerning inverse limits of tent maps. The survey concentrates on Ingram’s Conjecture. Some motivation is given for the study of such inverse limits.

Automata, Borel functions and real numbers in Pisot base

Benoit Cagnard, Pierre Simonnet (2007)

RAIRO - Theoretical Informatics and Applications

This note is about functions ƒ : Aω → Bω whose graph is recognized by a Büchi finite automaton on the product alphabet A x B. These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such function are continuous or not. In 1920 W. Sierpinski showed that a function f : is Baire class 1 if and only if both the overgraph and the undergraph of f are Fσ. We show that such characterization is also true for functions on infinite words if we replace the real...

Baire classes of affine vector-valued functions

Ondřej F. K. Kalenda, Jiří Spurný (2016)

Studia Mathematica

We investigate Baire classes of strongly affine mappings with values in Fréchet spaces. We show, in particular, that the validity of the vector-valued Mokobodzki result on affine functions of the first Baire class is related to the approximation property of the range space. We further extend several results known for scalar functions on Choquet simplices or on dual balls of L₁-preduals to the vector-valued case. This concerns, in particular, affine classes of strongly affine Baire mappings, the...

Banach spaces of bounded Szlenk index

E. Odell, Th. Schlumprecht, A. Zsák (2007)

Studia Mathematica

For a countable ordinal α we denote by α the class of separable, reflexive Banach spaces whose Szlenk index and the Szlenk index of their dual are bounded by α. We show that each α admits a separable, reflexive universal space. We also show that spaces in the class ω α · ω embed into spaces of the same class with a basis. As a consequence we deduce that each α is analytic in the Effros-Borel structure of subspaces of C[0,1].

Banach spaces of bounded Szlenk index II

D. Freeman, E. Odell, Th. Schlumprecht, A. Zsák (2009)

Fundamenta Mathematicae

For every α < ω₁ we establish the existence of a separable Banach space whose Szlenk index is ω α ω + 1 and which is universal for all separable Banach spaces whose Szlenk index does not exceed ω α ω . In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with Tsirelson type upper estimates.

Base-base paracompactness and subsets of the Sorgenfrey line

Strashimir G. Popvassilev (2012)

Mathematica Bohemica

A topological space X is called base-base paracompact (John E. Porter) if it has an open base such that every base ' has a locally finite subcover 𝒞 ' . It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.

Currently displaying 361 – 380 of 2392