Uniform regularity of measures on compact spaces.
Some stability properties of motions in pseudo-dynamical systems and semi-systems are studied.
Galvin and Prikry defined completely Ramsey sets and showed that the class of completely Ramsey sets forms a σ-algebra containing open sets. However, they used two definitions of completely Ramsey. We show that they are not equivalent as they remarked. One of these definitions is a more uniform property than the other. We call it the uniformly completely Ramsey property. We show that some of the results of Ellentuck, Silver, Brown and Aniszczyk concerning completely Ramsey sets also hold for uniformly...
We investigate the structure of kneading sequences that belong to unimodal maps for which the omega-limit set of the turning point is a minimal Cantor set. We define a scheme that can be used to generate uniformly recurrent and regularly recurrent infinite sequences over a finite alphabet. It is then shown that if the kneading sequence of a unimodal map can be generated from one of these schemes, then the omega-limit set of the turning point must be a minimal Cantor set.
Our aim is to give a description of and , the phase space of universal ambit and the phase space of universal minimal dynamical system for the group of real numbers with the usual topology.
The aim of the paper is to prove that the bounded and unbounded Urysohn universal spaces have unique (up to isometric isomorphism) structures of metric groups of exponent 2. An algebraic-geometric characterization of Boolean Urysohn spaces (i.e. metric groups of exponent 2 which are metrically Urysohn spaces) is given.
In this paper the concept of a fuzzy contraction mapping on a fuzzy metric space is introduced and it is proved that every fuzzy contraction mapping on a complete fuzzy metric space has a unique fixed point.