A common fixed point theorem satisfying integral type implicit relations.
We define various ring sequential convergences on and . We describe their properties and properties of their convergence completions. In particular, we define a convergence on by means of a nonprincipal ultrafilter on the positive prime numbers such that the underlying set of the completion is the ultraproduct of the prime finite fields . Further, we show that is sequentially precompact but fails to be strongly sequentially precompact; this solves a problem posed by D. Dikranjan.
The main purpose of the present paper is to established conditions for a continuous dependence of fixed points of -contractive mappings in uniform spaces. An application to nonlinear functional differential equations of neutral type have been made.
Let f be a Borel measurable mapping of a Luzin (i.e. absolute Borel metric) space L onto a metric space M such that f(F) is a Borel subset of M if F is closed in L. We show that then is a set for all except countably many y ∈ M, that M is also Luzin, and that the Borel classes of the sets f(F), F closed in L, are bounded by a fixed countable ordinal. This gives a converse of the classical theorem of Arsenin and Kunugui. As a particular case we get Taĭmanov’s theorem saying that the image of...
We prove there is a countable dense homogeneous subspace of ℝ of size ℵ₁. The proof involves an absoluteness argument using an extension of the logic obtained by adding predicates for Borel sets.
We construct a space having the properties in the title, and with the same technique, a countably compact topological group which is not absolutely countably compact.