Previous Page 3

Displaying 41 – 56 of 56

Showing per page

Prolongational centers and their depths

Boyang Ding, Changming Ding (2016)

Fundamenta Mathematicae

In 1926 Birkhoff defined the center depth, one of the fundamental invariants that characterize the topological structure of a dynamical system. In this paper, we introduce the concepts of prolongational centers and their depths, which lead to a complete family of topological invariants. Some basic properties of the prolongational centers and their depths are established. Also, we construct a dynamical system in which the depth of a prolongational center is a prescribed countable ordinal.

Proper actions of locally compact groups on equivariant absolute extensors

Sergey Antonyan (2009)

Fundamenta Mathematicae

Let G be a locally compact Hausdorff group. We study equivariant absolute (neighborhood) extensors (G-AE's and G-ANE's) in the category G-ℳ of all proper G-spaces that are metrizable by a G-invariant metric. We first solve the linearization problem for proper group actions by proving that each X ∈ G-ℳ admits an equivariant embedding in a Banach G-space L such that L∖{0} is a proper G-space and L∖{0} ∈ G-AE. This implies that in G-ℳ the notions of G-A(N)E and G-A(N)R coincide. Our embedding result...

Propriétés topologiques et combinatoires des échelles de numération

Guy Barat, Tomasz Downarowicz, Anzelm Iwanik, Pierre Liardet (2000)

Colloquium Mathematicae

Topological and combinatorial properties of dynamical systems called odometers and arising from number systems are investigated. First, a topological classification is obtained. Then a rooted tree describing the carries in the addition of 1 is introduced and extensively studied. It yields a description of points of discontinuity and a notion of low scale, which is helpful in producing examples of what the dynamics of an odometer can look like. Density of the orbits is also discussed.

Proximality in Pisot tiling spaces

Marcy Barge, Beverly Diamond (2007)

Fundamenta Mathematicae

A substitution φ is strong Pisot if its abelianization matrix is nonsingular and all eigenvalues except the Perron-Frobenius eigenvalue have modulus less than one. For strong Pisot φ that satisfies a no cycle condition and for which the translation flow on the tiling space φ has pure discrete spectrum, we describe the collection φ P of pairs of proximal tilings in φ in a natural way as a substitution tiling space. We show that if ψ is another such substitution, then φ and ψ are homeomorphic if and...

Pure measures

Zdeněk Frolík, Jan K. Pachl (1973)

Commentationes Mathematicae Universitatis Carolinae

Currently displaying 41 – 56 of 56

Previous Page 3