Displaying 821 – 840 of 2392

Showing per page

Extensions of topological and semitopological groups and the product operation

Aleksander V. Arhangel'skii, Miroslav Hušek (2001)

Commentationes Mathematicae Universitatis Carolinae

The main results concern commutativity of Hewitt-Nachbin realcompactification or Dieudonné completion with products of topological groups. It is shown that for every topological group G that is not Dieudonné complete one can find a Dieudonné complete group H such that the Dieudonné completion of G × H is not a topological group containing G × H as a subgroup. Using Korovin’s construction of G δ -dense orbits, we present some examples showing that some results on topological groups are not valid for semitopological...

F σ -mappings and the invariance of absolute Borel classes

Petr Holický, Jiří Spurný (2004)

Fundamenta Mathematicae

It is proved that F σ -mappings preserve absolute Borel classes, which improves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on the fact that any F σ -mapping f: X → Y of an absolute Suslin metric space X onto an absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a suitable F σ -set X X satisfying f ( X ) = Y .

Finite union of H-sets and countable compact sets

Sylvain Kahane (1993)

Colloquium Mathematicae

In [2], D. E. Grow and M. Insall construct a countable compact set which is not the union of two H-sets. We make precise this result in two directions, proving such a set may be, but need not be, a finite union of H-sets. Descriptive set theory tools like Cantor-Bendixson ranks are used; they are developed in the book of A. S. Kechris and A. Louveau [6]. Two proofs are presented; the first one is elementary while the second one is more general and useful. Using the last one I prove in my thesis,...

Finite-to-one continuous s-covering mappings

Alexey Ostrovsky (2007)

Fundamenta Mathematicae

The following theorem is proved. Let f: X → Y be a finite-to-one map such that the restriction f | f - 1 ( S ) is an inductively perfect map for every countable compact set S ⊂ Y. Then Y is a countable union of closed subsets Y i such that every restriction f | f - 1 ( Y i ) is an inductively perfect map.

Fixed and coincidence points of hybrid mappings

H. K. Pathak, M. S. Khan (2002)

Archivum Mathematicum

The purpose of this note is to provide a substantial improvement and appreciable generalizations of recent results of Beg and Azam; Pathak, Kang and Cho; Shiau, Tan and Wong; Singh and Mishra.

Currently displaying 821 – 840 of 2392