Displaying 1221 – 1240 of 2392

Showing per page

More on the Kechris-Pestov-Todorcevic correspondence: Precompact expansions

L. Nguyen Van Thé (2013)

Fundamenta Mathematicae

In 2005, the paper [KPT05] by Kechris, Pestov and Todorcevic provided a powerful tool to compute an invariant of topological groups known as the universal minimal flow. This immediately led to an explicit representation of this invariant in many concrete cases. However, in some particular situations, the framework of [KPT05] does not allow one to perform the computation directly, but only after a slight modification of the original argument. The purpose of the present paper is to supplement [KPT05]...

More on tie-points and homeomorphism in ℕ*

Alan Dow, Saharon Shelah (2009)

Fundamenta Mathematicae

A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as X = A x B where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...

Moscow spaces, Pestov-Tkačenko Problem, and C -embeddings

Aleksander V. Arhangel'skii (2000)

Commentationes Mathematicae Universitatis Carolinae

We show that there exists an Abelian topological group G such that the operations in G cannot be extended to the Dieudonné completion μ G of the space G in such a way that G becomes a topological subgroup of the topological group μ G . This provides a complete answer to a question of V.G. Pestov and M.G. Tkačenko, dating back to 1985. We also identify new large classes of topological groups for which such an extension is possible. The technique developed also allows to find many new solutions to the...

Multiplication is Discontinuous in the Hawaiian Earring Group (with the Quotient Topology)

Paul Fabel (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

The natural quotient map q from the space of based loops in the Hawaiian earring onto the fundamental group provides a naturally occuring example of a quotient map such that q × q fails to be a quotient map. With the quotient topology, this example shows π₁(X,p) can fail to be a topological group if X is locally path connected.

Multivalued fractals in b-metric spaces

Monica Boriceanu, Marius Bota, Adrian Petruşel (2010)

Open Mathematics

Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems theory in several topics of applied sciences. It is known that examples of fractals and multivalued fractals are coming from fixed point theory for single-valued and multivalued operators, via the so-called fractal and multi-fractal...

n-Arc connected spaces

Benjamin Espinoza, Paul Gartside, Ana Mamatelashvili (2013)

Colloquium Mathematicae

A space is n-arc connected (n-ac) if any family of no more than n-points are contained in an arc. For graphs the following are equivalent: (i) 7-ac, (ii) n-ac for all n, (iii) continuous injective image of a closed subinterval of the real line, and (iv) one of a finite family of graphs. General continua that are ℵ₀-ac are characterized. The complexity of characterizing n-ac graphs for n = 2,3,4,5 is determined to be strictly higher than that of the stated characterization of 7-ac graphs.

Neighborhood base at the identity of free paratopological groups

Ali Sayed Elfard (2013)

Topological Algebra and its Applications

In 1985, V. G. Pestov described a neighborhood base at the identity of free topological groups on a Tychonoff space in terms of the elements of the fine uniformity on the Tychonoff space. In this paper, we extend Postev’s description to the free paratopological groups where we introduce a neighborhood base at the identity of free paratopological groups on any topological space in terms of the elements of the fine quasiuniformity on the space.

Currently displaying 1221 – 1240 of 2392