A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism
Under 𝔭 = 𝔠, we prove that it is possible to endow the free abelian group of cardinality 𝔠 with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.
We prove that a space M with Disjoint Disk Property is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. This implies that the product M × I² of a space M with the disk is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. The proof of these theorems exploits the homological characterization of Q-manifolds due to Daverman and Walsh, combined with the existence of G-stable points in C-spaces. To establish the existence of such points we prove (and afterward...
A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: , that is, the coincidence index is equal to the Lefschetz number. It follows that if then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with “point-like” (acyclic)...
We develop a natural matrix formalism for state splittings and amalgamations of higher-dimensional subshifts of finite type which extends the common notion of strong shift equivalence of ℤ⁺-matrices. Using the decomposition theorem every topological conjugacy between two -shifts of finite type can thus be factorized into a finite chain of matrix transformations acting on the transition matrices of the two subshifts. Our results may be used algorithmically in computer explorations on topological...
In this paper a new class of self-mappings on metric spaces, which satisfy the nonexpensive type condition (3) below is introduced and investigated. The main result is that such mappings have a unique fixed point. Also, a remetrization theorem, which is converse to Banach contraction principle is given.
A class of Banach spaces, countably determined in their weak topology (hence, WCD spaces) is defined and studied; we call them strongly weakly countably determined (SWCD) Banach spaces. The main results are the following: (i) A separable Banach space not containing ℓ¹(ℕ) is SWCD if and only if it has separable dual; thus in particular, not every separable Banach space is SWCD. (ii) If K is a compact space, then the space C(K) is SWCD if and only if K is countable.
In this paper we define and investigate a new subclass of those Banach spaces which are -analytic in their weak topology; we call them strongly weakly -analytic (SWKA) Banach spaces. The class of SWKA Banach spaces extends the known class of strongly weakly compactly generated (SWCG) Banach spaces (and their subspaces) and it is related to that in the same way as the familiar classes of weakly -analytic (WKA) and weakly compactly generated (WCG) Banach spaces are related. We show that: (i) not...