Displaying 21 – 40 of 81

Showing per page

Extensions of umbral calculus II: double delta operators, Leibniz extensions and Hattori-Stong theorems

Francis Clarke, John Hunton, Nigel Ray (2001)

Annales de l’institut Fourier

We continue our programme of extending the Roman-Rota umbral calculus to the setting of delta operators over a graded ring E * with a view to applications in algebraic topology and the theory of formal group laws. We concentrate on the situation where E * is free of additive torsion, in which context the central issues are number- theoretic questions of divisibility. We study polynomial algebras which admit the action of two delta operators linked by an invertible power series, and make related constructions...

Framed bicobordism

Paul Cherenack (1995)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Galois theory and Lubin-Tate cochains on classifying spaces

Andrew Baker, Birgit Richter (2011)

Open Mathematics

We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group C p r , the cochain extension F ( B C p r + , E n ) F ( E C p r + , E n ) is not a Galois...

Homology of braid groups and their generalizations

Vladimir Vershinin (1998)

Banach Center Publications

In the paper we give a survey of (co)homologies of braid groups and groups connected with them. Among these groups are pure braid groups and generalized braid groups. We present explicit formulations of some theorems of V. I. Arnold, E. Brieskorn, D. B. Fuks, F. Cohen, V. V. Goryunov and others. The ideas of some proofs are outlined. As an application of (co)homologies of braid groups we study the Thom spectra of these groups.

Injective comodules and Landweber exact homology theories

Mark Hovey (2007)

Fundamenta Mathematicae

We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the J n , r = E ( n ) ( M r E ( r ) ) , where 0 ≤ r ≤ n, with the endomorphism ring of J n , r being E ( r ) ^ * E ( r ) ^ , where E ( r ) ^ denotes the completion of E(r).

Multiplicative operations in the Steenrod algebra for Brown–Peterson cohomology

Michael Slack (1999)

Fundamenta Mathematicae

A family of multiplicative operations in the BP Steenrod algebra is defined which is related to the total Steenrod power operation from the mod p Steenrod algebra. The main result of the paper links the BP versions of the total Steenrod power with the formal group approach to multiplicative BP operations by identifying the p-typical curves (power series) which correspond to these operations. Some relations are derived from this identification, and a short proof of the Hopf invariant one theorem...

On symplectic cobordism of real projective plane.

Malkhaz Bakuradze (2000)

Publicacions Matemàtiques

This note answers a question of V. V. Vershinin concerning the properties of Buchstaber's elements Θ2i+1(2) in the symplectic cobordism ring of the real projective plane. It is motivated by Roush's famous result that the restriction of these elements to the projective line is trivial, and by the relationship with obstructions to multiplication in symplectic cobordism with singularities.

Currently displaying 21 – 40 of 81