Sur l'algebre de Lie des Champs de Vecteurs
Soient un groupe algébrique complexe réductif et connexe, un sous-groupe de Borel de et un sous-groupe sphérique de . Soit un plongement -équivariant de . Nous savons que n’a qu’un nombre fini d’orbites dans ; nous montrons qu’il n’en a qu’un nombre fini dans . Soit l’adhérence dans d’une orbite de dans et l’adhérence d’une orbite de dans . Si est toroïdal, nous montrons que l’intersection est propre dans et la décrivons ensemblistement. Si de plus est lisse,...
We prove that the first complex homology of the Johnson subgroup of the Torelli group is a non-trivial, unipotent -module for all and give an explicit presentation of it as a -module when . We do this by proving that, for a finitely generated group satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the...
We study the cohomology properties of the singular foliation ℱ determined by an action Φ: G × M → M where the abelian Lie group G preserves a riemannian metric on the compact manifold M. More precisely, we prove that the basic intersection cohomology is finite-dimensional and satisfies the Poincaré duality. This duality includes two well known situations: ∙ Poincaré duality for basic cohomology (the action Φ is almost free). ∙ Poincaré duality for intersection cohomology (the group G is compact...
We calculate completely the Real cobordism groups, introduced by Landweber and Fujii, in terms of homotopy groups of known spectra.
Let X be a simply connected space and LX the space of free loops on X. We determine the mod p cohomology algebra of LX when the mod p cohomology of X is generated by one element or is an exterior algebra on two generators. We also provide lower bounds on the dimensions of the Hodge decomposition factors of the rational cohomology of LX when the rational cohomology of X is a graded complete intersection algebra. The key to both of these results is the identification of an important subalgebra of...
This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds.