Previous Page 3

Displaying 41 – 56 of 56

Showing per page

Strong surjectivity of mappings of some 3-complexes into M Q 8

Claudemir Aniz (2008)

Open Mathematics

Let K be a CW-complex of dimension 3 such that H 3(K;ℤ) = 0 and M Q 8 the orbit space of the 3-sphere 𝕊 3 with respect to the action of the quaternion group Q 8 determined by the inclusion Q 8 ⊆ 𝕊 3 . Given a point a ∈ M Q 8 , we show that there is no map f:K → M Q 8 which is strongly surjective, i.e., such that MR[f,a]=min(g −1(a))|g ∈ [f] ≠ 0.

Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles

Phan Nguyen Huynh (1994)

Annales de l'institut Fourier

Dans cet article nous donnons les formes normales des sytèmes linéaires hamiltoniens antisymétriques accessibles H A n , m , p . Nous construisons une stratification et une décomposition cellulaire analytique de H A n , m , p , puis nous prouvons que son groupe d’homotopie est isomorphe à celui d’une grassmanienne. Ensuite, nous démontrons que H A n , m , p est homotopiquement équivalent à l’espace des systèmes linéaires accessibles. En appliquant ces résultats topologiques, on peut prouver qu’il n’existe pas de paramétrisation continue...

Sur les orbites d’un sous-groupe sphérique dans la variété des drapeaux

Nicolas Ressayre (2004)

Bulletin de la Société Mathématique de France

Soient G un groupe algébrique complexe réductif et connexe, B un sous-groupe de Borel de G et H un sous-groupe sphérique de G . Soit X un plongement G × G -équivariant de G . Nous savons que B × H n’a qu’un nombre fini d’orbites dans G  ; nous montrons qu’il n’en a qu’un nombre fini dans X . Soit V ¯ l’adhérence dans X d’une orbite de B × H dans G et 𝒪 ¯ l’adhérence d’une orbite de G × G dans X . Si X est toroïdal, nous montrons que l’intersection V ¯ 𝒪 ¯ est propre dans X et la décrivons ensemblistement. Si de plus X est lisse,...

Currently displaying 41 – 56 of 56

Previous Page 3