Strong surjectivity of mappings of some 3-complexes into
Let K be a CW-complex of dimension 3 such that H 3(K;ℤ) = 0 and the orbit space of the 3-sphere with respect to the action of the quaternion group Q 8 determined by the inclusion Q 8 ⊆ . Given a point a ∈ , we show that there is no map f:K → which is strongly surjective, i.e., such that MR[f,a]=min(g −1(a))|g ∈ [f] ≠ 0.