Displaying 101 – 120 of 130

Showing per page

The classification of weighted projective spaces

Anthony Bahri, Matthias Franz, Dietrich Notbohm, Nigel Ray (2013)

Fundamenta Mathematicae

We obtain two classifications of weighted projective spaces: up to hoeomorphism and up to homotopy equivalence. We show that the former coincides with Al Amrani's classification up to isomorphism of algebraic varieties, and deduce the latter by proving that the Mislin genus of any weighted projective space is rigid.

The Mumford conjecture

Geoffrey Powell (2004/2005)

Séminaire Bourbaki

The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space B Γ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that B Γ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and...

Topological realization of a family of pseudoreflection groups

Dietrich Notbohm (1998)

Fundamenta Mathematicae

We are interested in a topological realization of a family of pseudoreflection groups G G L ( n , F p ) ; i.e. we are looking for topological spaces whose mod-p cohomology is isomorphic to the ring of invariants F p [ x 1 , . . . , x n ] G . Spaces of this type give partial answers to a problem of Steenrod, namely which polynomial algebras over F p can appear as the mod-p cohomology of a space. The family under consideration is given by pseudoreflection groups which are subgroups of the wreath product / q Σ n where q divides p - 1 and where p is...

Currently displaying 101 – 120 of 130