Exact loop space sequences
F. Croom (1971)
Fundamenta Mathematicae
Hans Scheerer, Daniel Tanré (1991)
Publicacions Matemàtiques
Let Sr be the category of r-reduced simplicial sets, r ≥ 3; let Lr-1 be the category of (r-1)-reduced differential graded Lie algebras over Z. According to the fundamental work [3] of W.G. Dwyer both categories are endowed with closed model category structures such that the associated tame homotopy category of Sr is equivalent to the associated homotopy category of Lr-1. Here we embark on a study of this equivalence and its implications. In particular, we show how to compute homology, cohomology,...
Dietrich Notbohm, Larry Smith (1990)
Mathematische Annalen
Dietrich Notbohm, Larry Smith (1990)
Mathematische Annalen
Dietrich Notbohm, Larry Smith (1991)
Mathematische Annalen
Nicolas Dupont, Micheline Vigué-Poirrier (1998)
Bulletin de la Société Mathématique de France
Rikard Bogvad (1983)
Mathematica Scandinavica
Rikard Bogvad, Carl Jacobsson (1990)
Manuscripta mathematica
E. Thomas, L.L. Larmore (1972)
Mathematica Scandinavica
C.A. McGibbon (1989)
Mathematische Zeitschrift
Ib Madsen (1975)
Mathematische Zeitschrift
Yves Félix, Jean-Claude Thomas (1994)
Annales de l'institut Fourier
Nous calculons dans ce texte l’homologie de l’espace des lacets de l’espace des configurations ordonnées de points dans une variété compacte simplement connexe .
F.R. Cohen, L.R. Taylor (1988)
Mathematische Zeitschrift
Younggi Choi (1996)
Mathematische Zeitschrift
Micheline Vigué-Poirrier (1984)
Annales scientifiques de l'École Normale Supérieure
Willi Meier (1978)
Mathematische Zeitschrift
Marcel Bökstedt, Iver Ottosen (1999)
Fundamenta Mathematicae
Let X be a space with free loop space ΛX and mod two cohomology R = H*X. We construct functors and ℓ(R) together with algebra homomorphisms and . When X is 1-connected and R is a symmetric algebra we show that these are isomorphisms.
Croom, F.H. (1969)
Portugaliae mathematica
Croom, F.H. (1971)
Portugaliae mathematica
Scott, Jonathan (2005)
Algebraic & Geometric Topology