Free -categories.
The purpose of this paper is to provide a geometric explanation of strong shape theory and to give a fairly simple way of introducing the strong shape category formally. Generally speaking, it is useful to introduce a shape theory as a localization at some class of “equivalences”. We follow this principle and we extend the standard shape category Sh(HoTop) to Sh(pro-HoTop) by localizing pro-HoTop at shape equivalences. Similarly, we extend the strong shape category of Edwards-Hastings to sSh(pro-Top)...
We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group , the cochain extension is not a Galois...
Let G be a compact group and X a G-ANR. Then X is a G-AR iff the H-fixed point set is homotopy trivial for each closed subgroup H ⊂ G.
Significant information about the topology of a bounded domain of a Riemannian manifold is encoded into the properties of the distance, , from the boundary of . We discuss recent results showing the invariance of the singular set of the distance function with respect to the generalized gradient flow of , as well as applications to homotopy equivalence.