Homotopy splittings involving G and G/O.
Stewart Priddy (1978)
Commentarii mathematici Helvetici
F. J. Díaz, S. Rodríguez-Machín (2001)
Extracta Mathematicae
Dennis Sullivan (2009)
Banach Center Publications
Using the algebraic theory of homotopies between maps of dga's we obtain a homotopy theory for algebraic structures defined by collections of multiplications and comultiplications. This is done by expressing these structures and resolved versions of them in terms of dga maps. This same homotopy theory of dga maps applies to extract invariants beyond homological periods from systems of moduli spaces that determine systems of chains that satisfy master equations like dX + X*X = 0. Minimal models of...
Jürgen Kretschmann (1976)
Mathematische Annalen
W. Balcerak, B. Hajduk (1981)
Colloquium Mathematicae
Anjos, Silvia (2002)
Geometry & Topology
Croom, F.H. (1971)
Portugaliae mathematica
Katsuya Eda (2010)
Fundamenta Mathematicae
Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.
Golasiński, Marek, Gonçalves, Daciberg Lima (2006)
Journal of Homotopy and Related Structures
Günter M. Ziegler, Rade T. Zivaljevic (1993)
Mathematische Annalen
Antonio Viruel (1998)
Manuscripta mathematica
Tammo tom Dieck (1978)
Journal für die reine und angewandte Mathematik
I.M. James (1975)
Commentarii mathematici Helvetici
Angeltveit, Vigleik, Rognes, John (2005)
Algebraic & Geometric Topology
Scott, Jonathan (2005)
Algebraic & Geometric Topology
J.R. Hubbuck (1983)
Mathematische Annalen
Karol Borsuk (1975)
Colloquium Mathematicae
G. Mislin, Peter Hilton, J. Roitberg (1972)
Inventiones mathematicae
Michael Mather (1973)
Mathematica Scandinavica
Michael H. Eggar (1979)
Mathematische Zeitschrift