On fuzzy subbundles of vector bundles.
Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA₀ for some A₀. Let with F₀ = ∗, F₁ = ΣK₁ and Fₘ ≃ G be a cone-decomposition of G of length m and F’₁ = ΣK’₁ ⊂ F₁ with K’₁ ⊂ K₁ which satisfy up to homotopy for all i. Then cat(E) ≤ m + 1, under suitable conditions, which is used to determine cat(SO(10)). A similar result was obtained by Kono and the first author (2007) to determine cat(Spin(9)), but that result could not...
Necessary and sufficient conditions for the existence of -dimensional oriented vector bundles () over CW-complexes of dimension with prescribed Stiefel-Whitney classes , and Pontrjagin class are found. As a consequence some results on the span of 6 and 7-dimensional oriented vector bundles are given in terms of characteristic classes.
We show that coefficients of residue formulas for characteristic numbers associated to a smooth toral action on a manifold can be taken in a quotient field This yields canonical identities over the integers and, reducing modulo two, residue formulas for Stiefel Whitney numbers.
This note answers a question of V. V. Vershinin concerning the properties of Buchstaber's elements Θ2i+1(2) in the symplectic cobordism ring of the real projective plane. It is motivated by Roush's famous result that the restriction of these elements to the projective line is trivial, and by the relationship with obstructions to multiplication in symplectic cobordism with singularities.